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Cyclic vinylogous triflate hemiacetals as new surrogates
for alkynyl aldehydes
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Abstract—Cyclic vinylogous triflate hemiacetals can serve as ‘synthetic equivalents’ for alkynyl aldehydes: treatment of a vinylogous
triflate hemiacetal with excess amounts of Grignard reagents produces acyclic alkynyl alcohols in good to high yields. This trans-
formation likely involves the Grob-type C–C bond cleaving fragmentation to form the alkynyl aldehyde in situ. Subsequent nucleo-
philic attack of the Grignard reagent furnishes secondary alkynols. Vinylogous triflate hemiacetals are easily prepared by DIBALH
reduction of vinylogous acyl triflates, which are derived from cyclic 1,3-diketones.
� 2006 Elsevier Ltd. All rights reserved.
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Carbonyl moieties are ubiquitous components of impor-
tant molecules in a wide range of areas in chemistry.1

The diverse reactivity of carbonyl compounds presents
many options in organic synthesis, but the high reactiv-
ity of those compounds usually needs to be managed
effectively to achieve the desired transformations. Alde-
hydes, being generally more reactive than ketones and
esters, pose particular problems related to the myriad
reaction pathways in which aldehydes participate.

Protecting group strategies are often employed to con-
trol the reactivity of C@O bonds, with acetals of various
types being perhaps the most popular.2 Under a range of
mild hydrolytic conditions, acetals may be reversibly
converted into hemiacetals, which generally collapse to
reveal the underlying carbonyl group. Protecting groups
enable one to shuttle sensitive functionality through
harsh reaction sequences before the deprotection at the
appropriate stage.

Alternatively, masked carbonyls may be employed to
reveal the reactive ketone or aldehyde substrate during
the course of the desired reaction, rather than in a
previously mentioned protecting group manipulation.
For example, olefination conditions have been applied
to convert cyclic hemiacetals (lactols, usually prepared
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by reduction of lactones) into hydroxy alkenes via
in situ-generated aldehydes.3 Due to the stability of
many cyclic hemiacetals, their emergence as masked
aldehydes was almost inevitable. This convenient
approach obviates the need to prepare and handle the
labile aldehyde prior to the desired reaction.

This letter describes a new class of stable alkynyl alde-
hyde surrogate: cyclic vinylogous triflate hemiacetal 2.
Vinylogous hemiacetals 2 arise from DIBALH reduc-
tion of cyclic vinylogous ester derivatives 1, which in
turn are prepared from the corresponding 1,3-diketone
(Eq. 1).4 Subsequent treatment of 2 with excess amounts
of Grignard reagents directly affords alkynyl alcohols 3,
presumably through in situ generation of alkynyl alde-
hyde intermediate A. In contrast to ordinary cyclic
hemiacetals (lactols), vinylogous triflate hemiacetals 2
are not subject to reversible masking and unmasking
of the reactive aldehyde.
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The tandem fragmentation/addition process (2! 3)
illustrated in Eq. 1 is made possible by the nucleofugacity
of the triflate group, which activates the r-bond frame-
work of 2 for the Grob-type fragmentation. We have
been studying the related tandem addition/fragmenta-
tion process that converts cyclic vinylogous acyl triflates
(1) into acyclic alkynyl ketones, amides, and related com-
pounds using various carbon and nitrogen nucleophiles.5

The synthesis of acyclic alkynyl aldehydes by the reaction
of 1 with an equimolar amount of hydride agent, how-
ever, could not bring about the desired aldehydes in
acceptable yield and purity, despite strong evidence that
they are generated efficiently in the reaction mixture (vide
infra). We concluded that the problem stems from the
high lability of alkynyl aldehydes under the reaction con-
ditions, which prompted the current efforts.

During our research on the direct reductive ring opening
reaction of vinylogous acyl triflate 1a (derived from 2-
methyl-1,3-cyclohexanedione) to form the correspond-
ing acyclic primary alkynol 4a using a variety of reduc-
ing agents,5 we observed the formation of cyclic
vinylogous hemiacetal 2a along with the desired prod-
uct, 4a (Eq. 2, Table 1). The products ratios depended
on the sources of hydride species. Strong reducing
agents, such as LiBHEt3 (super hydride), furnished 4a
as the sole product (entry 1). Reduction using milder
borohydrides (e.g., LiBH4) predominantly afforded 2a
along with small amounts of 4a (entry 2). When the
Table 1. Reduction of vinylogous acyl triflate 1a using various
reducing agentsa,b
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Entry Reducing agent Yieldc (%)

2a 4a

1 LiBHEt3 0 65d

2 LiBH4 62 9
3 (i-Bu)2AlH 99d 0
4 (i-Bu)2AlHe 97d 0
5f i-BuMgCl 0 0

a Standard reaction conditions: vinylogous acyl triflate 1a (0.5 mmol)
was treated with reducing agent (1.1 mmol) in 2 mL of THF at �78
to 60 �C within 80 min.

b Experiments described in entries 1–3 were originally conducted
enroute to an optimized procedure for the preparation of 4a (see Ref.
5). Aldehyde A (R = Me) was never isolated in acceptable yield or
purity.

c Estimated yield based on 1H NMR otherwise noted.
d Isolated yield.
e Vinylogous acyl triflate 1a (0.5 mmol) was treated with 0.55 mmol of

DIBALH at �78 �C to rt within 50 min.
f Secondary alkynol 3a was obtained in 59% isolated yield.

3a

MeOH
reduction of 1a was conducted with (i-Bu)2AlH (DI-
BALH; 2.2 equiv) as the hydride source in THF between
�78 and 60 �C within 80 min, vinylogous hemiacetal 2a
was formed selectively in almost quantitative yield (en-
try 3).6 Optimization of these reaction conditions re-
vealed that the excess DIBALH and mild heating were
unnecessary. Thus, vinylogous ester derivative 1a was
treated with an approximately equimolar amount of
DIBALH (1.1 equiv) at �78 �C to rt (within 50 min),
giving 2a in excellent yield (entry 4).7 Surprisingly, the
treatment of 1a with i-BuMgCl (2.2 equiv) furnished
acyclic secondary alkynol 3a in 59% isolated yield as
the sole product (entry 5). This result implies that half
of the Grignard reagent behaved as a hydride source
and the other half reacted as a carbon nucleophile.8

The DIBALH reduction of triflate 1b (derived from
1,3-cyclohexanedione) provided vinylogous hemiacetal
2b in 95% yield (Eq. 3).
Despite considerable efforts, we were unable to obtain
the corresponding alkynyl aldehyde (A, R = Me) in sat-
isfactory yield. We treated vinylogous hemiacetal 2a
with equimolar amounts of bases, such as LiBHEt3,9

n-BuLi,10 PhMgBr, LiHMDS, NaH, and NaOEt; in
most cases, a complex mixture of compounds was
formed, which included a small amount of aldehydes
as determined by 1H NMR analysis of the crude mix-
tures. These observations—including the reaction of 1a
with excess amounts of i-BuMgCl to form secondary
alkynol 3a (entry 5 of Table 1)—prompted us to investi-
gate 2a as a novel alkynyl aldehyde surrogate; vinyl-
ogous triflate hemiacetal 2a was isolable (and in nearly
quantitative yield).

We conducted a series of reactions between vinylogous
triflate hemiacetal 2a and excess amounts of diverse
Grignard reagents (Eq. 4, Table 2). Indeed, the reaction
of 2a with PhMgBr (2.2 equiv) in THF between �78 and
60 �C within 80 min furnished benzylic alcohol 3b in
84% yield (entry 1).11 The tandem fragmentation/addi-
tion reaction also took place using isopropenylmagne-
sium bromide to afford allylic alcohol 3c in high yield
(entry 2). Alkyl and allyl Grignard reagents gave rise
to the corresponding alcohols (3d and 3e, respectively)
in good yields (entries 3 and 4). Addition of the alkynyl-
magnesium chloride12 to the in situ-generated aldehyde
proceeded smoothly to furnish propargyl alcohol 3f in
high yield (entry 5). The reaction of vinylogous hemi-
acetal 2b with PhMgBr, however, afforded 3g in only
15% yield with a significant amount of recovered starting
material 2b under the same reaction conditions (entry 6).

The mechanistic pathway for the present stepwise ring
opening reaction of vinylogous acyl triflates 1—
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Scheme 1. Proposed mechanistic pathway for the stepwise ring
opening reaction of vinylogous acyl triflates 1 through vinylogous
triflate hemiacetals 2.

Table 2. Tandem fragmentation/addition reaction of vinylogous triflate hemiacetals 2 using various Grignard reagentsa
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Entry R0MgX 2 Product 3 Yieldb (%)

1 PhMgBr 2a (R = Me)

Ph

MeOH 3b 84

2
MgBr

2a (R = Me) MeOH 3c 81

3 n-BuMgCl 2a (R = Me)

Bu

MeOH 3d 76c

4 MgBr 2a (R = Me)
MeOH

3e 79

5 Ph–C„C–MgCld 2a (R = Me)

MeOH

Ph

3f 90

6 PhMgBr 2b (R = H)

Ph

OH 3g 15e

a Vinylogous hemiacetal 2 (0.5 mmol) was treated with Grignard reagent (1.1 mmol) in 2 mL of THF at �78 to 60 �C within 80 min.
b Isolated yield.
c 2a was recovered in 19% yield.
d The alkynyl Grignard reagent was prepared from phenylacetylene (3 equiv) and n-BuMgCl (2.2 equiv) in THF at 60 �C for 30 min.
e 2b was recovered in 81% yield.
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DIBALH reduction of 1 and subsequent treatment of
vinylogous triflate hemiacetals 2 with excess amounts
of Grignard reagents—is proposed as shown in Scheme
1. The alkoxyaluminum intermediate (B-Al) is formed
by 1,2-reduction of 1 with (i-Bu)2AlH (DIBALH). This
species is apparently more stable with respect to frag-
mentation than the alkoxyboronate intermediate (B-B)
generated by LiBHEt3 reduction, and vinylogous hemi-
acetals 2 were formed upon aqueous workup. The Grob-
type C–C bond cleaving fragmentation13,14 occurs upon
treatment of 2 with excess Grignard reagents, presum-
ably via the alkoxymagnesium intermediate (B-Mg).15

In situ-generated alkynyl aldehydes A would then react
with the remaining Grignard reagent to furnish inter-
mediate C, and aqueous workup yields secondary alky-
nols 3. This stepwise procedure to reach 3 demonstrates
the utility of isolable vinylogous triflate hemiacetals 2 as
alkynyl aldehyde surrogates.

In conclusion, treatment of vinylogous hemiacetal 2a
with excess amounts of Grignard reagents produced
acyclic alkynols 3 in good to high yields. This transfor-
mation likely involves the Grob-type C–C bond cleav-
ing fragmentation to form alkynyl aldehyde A in situ,
and subsequent nucleophilic attack of the Grignard
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reagent furnishes secondary alkynols 3. The vinylogous
triflate hemiacetals 2 are prepared by DIBALH reduc-
tion of vinylogous acyl triflates 1, derived from cyclic
1,3-diketones, and serve as surrogates for alkynyl
aldehydes.
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